Evaluate
2\left(\sqrt{15}+3\right)\approx 13.745966692
Share
Copied to clipboard
\left(\sqrt{5}+\sqrt{3}\right)\sqrt{1}\sqrt{1}\sqrt{12}
Factor 12=1\times 12. Rewrite the square root of the product \sqrt{1\times 12} as the product of square roots \sqrt{1}\sqrt{12}.
\left(\sqrt{5}+\sqrt{3}\right)\times 1\sqrt{12}
Multiply \sqrt{1} and \sqrt{1} to get 1.
\left(\sqrt{5}+\sqrt{3}\right)\times 1\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(\sqrt{5}+\sqrt{3}\right)\times 2\sqrt{3}
Multiply 1 and 2 to get 2.
\left(2\sqrt{5}+2\sqrt{3}\right)\sqrt{3}
Use the distributive property to multiply \sqrt{5}+\sqrt{3} by 2.
2\sqrt{5}\sqrt{3}+2\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply 2\sqrt{5}+2\sqrt{3} by \sqrt{3}.
2\sqrt{15}+2\left(\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{15}+2\times 3
The square of \sqrt{3} is 3.
2\sqrt{15}+6
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}