Evaluate
8\sqrt{3}+30\sqrt{10}-3\sqrt{5}-5\sqrt{2}-95\approx -0.054535479
Share
Copied to clipboard
4\sqrt{3}-\sqrt{50}+\sqrt{48}-\sqrt{45}-\left(\sqrt{50}-\sqrt{45}\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
4\sqrt{3}-5\sqrt{2}+\sqrt{48}-\sqrt{45}-\left(\sqrt{50}-\sqrt{45}\right)^{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
4\sqrt{3}-5\sqrt{2}+4\sqrt{3}-\sqrt{45}-\left(\sqrt{50}-\sqrt{45}\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
8\sqrt{3}-5\sqrt{2}-\sqrt{45}-\left(\sqrt{50}-\sqrt{45}\right)^{2}
Combine 4\sqrt{3} and 4\sqrt{3} to get 8\sqrt{3}.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(\sqrt{50}-\sqrt{45}\right)^{2}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(5\sqrt{2}-\sqrt{45}\right)^{2}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(5\sqrt{2}-3\sqrt{5}\right)^{2}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(25\left(\sqrt{2}\right)^{2}-30\sqrt{2}\sqrt{5}+9\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-3\sqrt{5}\right)^{2}.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(25\times 2-30\sqrt{2}\sqrt{5}+9\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{2} is 2.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(50-30\sqrt{2}\sqrt{5}+9\left(\sqrt{5}\right)^{2}\right)
Multiply 25 and 2 to get 50.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(50-30\sqrt{10}+9\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(50-30\sqrt{10}+9\times 5\right)
The square of \sqrt{5} is 5.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(50-30\sqrt{10}+45\right)
Multiply 9 and 5 to get 45.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-\left(95-30\sqrt{10}\right)
Add 50 and 45 to get 95.
8\sqrt{3}-5\sqrt{2}-3\sqrt{5}-95+30\sqrt{10}
To find the opposite of 95-30\sqrt{10}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}