Evaluate
10-4\sqrt{2}\approx 4.343145751
Share
Copied to clipboard
\frac{4\sqrt{3}-\sqrt{27}}{\sqrt{3}}+\left(2\sqrt{2}-1\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{4\sqrt{3}-3\sqrt{3}}{\sqrt{3}}+\left(2\sqrt{2}-1\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\sqrt{3}}{\sqrt{3}}+\left(2\sqrt{2}-1\right)^{2}
Combine 4\sqrt{3} and -3\sqrt{3} to get \sqrt{3}.
\sqrt{1}+\left(2\sqrt{2}-1\right)^{2}
Rewrite the division of square roots \frac{\sqrt{3}}{\sqrt{3}} as the square root of the division \sqrt{\frac{3}{3}} and perform the division.
1+\left(2\sqrt{2}-1\right)^{2}
Calculate the square root of 1 and get 1.
1+4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-1\right)^{2}.
1+4\times 2-4\sqrt{2}+1
The square of \sqrt{2} is 2.
1+8-4\sqrt{2}+1
Multiply 4 and 2 to get 8.
1+9-4\sqrt{2}
Add 8 and 1 to get 9.
10-4\sqrt{2}
Add 1 and 9 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}