Evaluate
\frac{\sqrt{2}\left(\sqrt{6}+1\right)}{2}\approx 2.439157589
Factor
\frac{\sqrt{2} {(\sqrt{2} \sqrt{3} + 1)}}{2} = 2.439157588755425
Quiz
Arithmetic
5 problems similar to:
( \sqrt { 48 } + \frac { 1 } { 4 } \sqrt { 8 } ) - \sqrt { 27 }
Share
Copied to clipboard
4\sqrt{3}+\frac{1}{4}\sqrt{8}-\sqrt{27}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
4\sqrt{3}+\frac{1}{4}\times 2\sqrt{2}-\sqrt{27}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{3}+\frac{2}{4}\sqrt{2}-\sqrt{27}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
4\sqrt{3}+\frac{1}{2}\sqrt{2}-\sqrt{27}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
4\sqrt{3}+\frac{1}{2}\sqrt{2}-3\sqrt{3}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\sqrt{3}+\frac{1}{2}\sqrt{2}
Combine 4\sqrt{3} and -3\sqrt{3} to get \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}