Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{33}\right)^{2}+4\sqrt{33}\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{33}+2\sqrt{3}\right)^{2}.
33+4\sqrt{33}\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
The square of \sqrt{33} is 33.
33+4\sqrt{3}\sqrt{11}\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Factor 33=3\times 11. Rewrite the square root of the product \sqrt{3\times 11} as the product of square roots \sqrt{3}\sqrt{11}.
33+4\times 3\sqrt{11}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Multiply \sqrt{3} and \sqrt{3} to get 3.
33+12\sqrt{11}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Multiply 4 and 3 to get 12.
33+12\sqrt{11}+4\times 3-4\sqrt{99}
The square of \sqrt{3} is 3.
33+12\sqrt{11}+12-4\sqrt{99}
Multiply 4 and 3 to get 12.
45+12\sqrt{11}-4\sqrt{99}
Add 33 and 12 to get 45.
45+12\sqrt{11}-4\times 3\sqrt{11}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
45+12\sqrt{11}-12\sqrt{11}
Multiply -4 and 3 to get -12.
45
Combine 12\sqrt{11} and -12\sqrt{11} to get 0.