Evaluate
45
Factor
3^{2}\times 5
Share
Copied to clipboard
\left(\sqrt{33}\right)^{2}+4\sqrt{33}\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{33}+2\sqrt{3}\right)^{2}.
33+4\sqrt{33}\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
The square of \sqrt{33} is 33.
33+4\sqrt{3}\sqrt{11}\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Factor 33=3\times 11. Rewrite the square root of the product \sqrt{3\times 11} as the product of square roots \sqrt{3}\sqrt{11}.
33+4\times 3\sqrt{11}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Multiply \sqrt{3} and \sqrt{3} to get 3.
33+12\sqrt{11}+4\left(\sqrt{3}\right)^{2}-4\sqrt{99}
Multiply 4 and 3 to get 12.
33+12\sqrt{11}+4\times 3-4\sqrt{99}
The square of \sqrt{3} is 3.
33+12\sqrt{11}+12-4\sqrt{99}
Multiply 4 and 3 to get 12.
45+12\sqrt{11}-4\sqrt{99}
Add 33 and 12 to get 45.
45+12\sqrt{11}-4\times 3\sqrt{11}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
45+12\sqrt{11}-12\sqrt{11}
Multiply -4 and 3 to get -12.
45
Combine 12\sqrt{11} and -12\sqrt{11} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}