Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\sqrt{2}-2\sqrt{\frac{1}{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
4\sqrt{2}-2\times \frac{\sqrt{1}}{\sqrt{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
4\sqrt{2}-2\times \frac{1}{\sqrt{3}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Calculate the square root of 1 and get 1.
4\sqrt{2}-2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\sqrt{2}-2\times \frac{\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
The square of \sqrt{3} is 3.
4\sqrt{2}+\frac{-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Express -2\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{3\times 4\sqrt{2}}{3}+\frac{-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{2} times \frac{3}{3}.
\frac{3\times 4\sqrt{2}-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Since \frac{3\times 4\sqrt{2}}{3} and \frac{-2\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\sqrt{\frac{1}{8}}-\sqrt{75}\right)
Do the multiplications in 3\times 4\sqrt{2}-2\sqrt{3}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{1}}{\sqrt{8}}-\sqrt{75}\right)
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{1}{\sqrt{8}}-\sqrt{75}\right)
Calculate the square root of 1 and get 1.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{1}{2\sqrt{2}}-\sqrt{75}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{75}\right)
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{2\times 2}-\sqrt{75}\right)
The square of \sqrt{2} is 2.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{4}-\sqrt{75}\right)
Multiply 2 and 2 to get 4.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{4}-5\sqrt{3}\right)
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\left(\frac{\sqrt{2}}{4}+\frac{4\left(-5\right)\sqrt{3}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -5\sqrt{3} times \frac{4}{4}.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\frac{\sqrt{2}+4\left(-5\right)\sqrt{3}}{4}
Since \frac{\sqrt{2}}{4} and \frac{4\left(-5\right)\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{12\sqrt{2}-2\sqrt{3}}{3}-\frac{\sqrt{2}-20\sqrt{3}}{4}
Do the multiplications in \sqrt{2}+4\left(-5\right)\sqrt{3}.
\frac{4\left(12\sqrt{2}-2\sqrt{3}\right)}{12}-\frac{3\left(\sqrt{2}-20\sqrt{3}\right)}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{12\sqrt{2}-2\sqrt{3}}{3} times \frac{4}{4}. Multiply \frac{\sqrt{2}-20\sqrt{3}}{4} times \frac{3}{3}.
\frac{4\left(12\sqrt{2}-2\sqrt{3}\right)-3\left(\sqrt{2}-20\sqrt{3}\right)}{12}
Since \frac{4\left(12\sqrt{2}-2\sqrt{3}\right)}{12} and \frac{3\left(\sqrt{2}-20\sqrt{3}\right)}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{48\sqrt{2}-8\sqrt{3}-3\sqrt{2}+60\sqrt{3}}{12}
Do the multiplications in 4\left(12\sqrt{2}-2\sqrt{3}\right)-3\left(\sqrt{2}-20\sqrt{3}\right).
\frac{45\sqrt{2}+52\sqrt{3}}{12}
Do the calculations in 48\sqrt{2}-8\sqrt{3}-3\sqrt{2}+60\sqrt{3}.