Evaluate
6\sqrt{7}\approx 15.874507866
Share
Copied to clipboard
\sqrt{30}\sqrt{3}+\sqrt{30}\sqrt{10}-\sqrt{30}\sqrt{7}+\sqrt{21}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Apply the distributive property by multiplying each term of \sqrt{30}+\sqrt{21}-3 by each term of \sqrt{3}+\sqrt{10}-\sqrt{7}.
\sqrt{3}\sqrt{10}\sqrt{3}+\sqrt{30}\sqrt{10}-\sqrt{30}\sqrt{7}+\sqrt{21}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
3\sqrt{10}+\sqrt{30}\sqrt{10}-\sqrt{30}\sqrt{7}+\sqrt{21}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{10}+\sqrt{10}\sqrt{3}\sqrt{10}-\sqrt{30}\sqrt{7}+\sqrt{21}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
3\sqrt{10}+10\sqrt{3}-\sqrt{30}\sqrt{7}+\sqrt{21}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Multiply \sqrt{10} and \sqrt{10} to get 10.
3\sqrt{10}+10\sqrt{3}-\sqrt{210}+\sqrt{21}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
To multiply \sqrt{30} and \sqrt{7}, multiply the numbers under the square root.
3\sqrt{10}+10\sqrt{3}-\sqrt{210}+\sqrt{3}\sqrt{7}\sqrt{3}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
3\sqrt{10}+10\sqrt{3}-\sqrt{210}+3\sqrt{7}+\sqrt{21}\sqrt{10}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{10}+10\sqrt{3}-\sqrt{210}+3\sqrt{7}+\sqrt{210}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
To multiply \sqrt{21} and \sqrt{10}, multiply the numbers under the square root.
3\sqrt{10}+10\sqrt{3}+3\sqrt{7}-\sqrt{21}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Combine -\sqrt{210} and \sqrt{210} to get 0.
3\sqrt{10}+10\sqrt{3}+3\sqrt{7}-\sqrt{7}\sqrt{3}\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
3\sqrt{10}+10\sqrt{3}+3\sqrt{7}-7\sqrt{3}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
3\sqrt{10}+3\sqrt{3}+3\sqrt{7}-3\sqrt{3}-3\sqrt{10}+3\sqrt{7}
Combine 10\sqrt{3} and -7\sqrt{3} to get 3\sqrt{3}.
3\sqrt{10}+3\sqrt{7}-3\sqrt{10}+3\sqrt{7}
Combine 3\sqrt{3} and -3\sqrt{3} to get 0.
3\sqrt{7}+3\sqrt{7}
Combine 3\sqrt{10} and -3\sqrt{10} to get 0.
6\sqrt{7}
Combine 3\sqrt{7} and 3\sqrt{7} to get 6\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}