Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{3}x\right)^{2}-\left(\sqrt{5}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{3}\right)^{2}x^{2}-\left(\sqrt{5}\right)^{2}
Expand \left(\sqrt{3}x\right)^{2}.
3x^{2}-\left(\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
3x^{2}-5
The square of \sqrt{5} is 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{3}x\right)^{2}-\left(\sqrt{5}\right)^{2})
Consider \left(\sqrt{3}x+\sqrt{5}\right)\left(\sqrt{3}x-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{3}\right)^{2}x^{2}-\left(\sqrt{5}\right)^{2})
Expand \left(\sqrt{3}x\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-\left(\sqrt{5}\right)^{2})
The square of \sqrt{3} is 3.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-5)
The square of \sqrt{5} is 5.
2\times 3x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
6x^{2-1}
Multiply 2 times 3.
6x^{1}
Subtract 1 from 2.
6x
For any term t, t^{1}=t.