Evaluate
-\frac{14}{3}\approx -4.666666667
Factor
-\frac{14}{3} = -4\frac{2}{3} = -4.666666666666667
Share
Copied to clipboard
\left(\sqrt{3}\right)^{2}-4-|\sqrt[3]{-27}-\pi ^{0}|-\left(-\frac{1}{3}\right)
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
3-4-|\sqrt[3]{-27}-\pi ^{0}|-\left(-\frac{1}{3}\right)
The square of \sqrt{3} is 3.
-1-|\sqrt[3]{-27}-\pi ^{0}|-\left(-\frac{1}{3}\right)
Subtract 4 from 3 to get -1.
-1-|-3-\pi ^{0}|-\left(-\frac{1}{3}\right)
Calculate \sqrt[3]{-27} and get -3.
-1-|-3-1|-\left(-\frac{1}{3}\right)
Calculate \pi to the power of 0 and get 1.
-1-|-4|-\left(-\frac{1}{3}\right)
Subtract 1 from -3 to get -4.
-1-4-\left(-\frac{1}{3}\right)
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -4 is 4.
-5-\left(-\frac{1}{3}\right)
Subtract 4 from -1 to get -5.
-5+\frac{1}{3}
The opposite of -\frac{1}{3} is \frac{1}{3}.
-\frac{14}{3}
Add -5 and \frac{1}{3} to get -\frac{14}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}