Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1-\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1-\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)
The square of \sqrt{3} is 3.
4-2\sqrt{3}-\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)
Add 3 and 1 to get 4.
4-2\sqrt{3}-\left(9-\left(\sqrt{5}\right)^{2}\right)
Consider \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
4-2\sqrt{3}-\left(9-5\right)
The square of \sqrt{5} is 5.
4-2\sqrt{3}-4
Subtract 5 from 9 to get 4.
-2\sqrt{3}
Subtract 4 from 4 to get 0.