Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1+\sqrt{12}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1+\sqrt{12}
The square of \sqrt{3} is 3.
4-2\sqrt{3}+\sqrt{12}
Add 3 and 1 to get 4.
4-2\sqrt{3}+2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
4
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.