Evaluate
2\left(\sqrt{15}-5\right)\approx -2.254033308
Factor
2 {(\sqrt{15} - 5)} = -2.254033308
Share
Copied to clipboard
\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}-\sqrt{5}\right)^{2}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}-\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
3-5-\left(\sqrt{3}-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
-2-\left(\sqrt{3}-\sqrt{5}\right)^{2}
Subtract 5 from 3 to get -2.
-2-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{5}\right)^{2}.
-2-\left(3-2\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{3} is 3.
-2-\left(3-2\sqrt{15}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-2-\left(3-2\sqrt{15}+5\right)
The square of \sqrt{5} is 5.
-2-\left(8-2\sqrt{15}\right)
Add 3 and 5 to get 8.
-2-8+2\sqrt{15}
To find the opposite of 8-2\sqrt{15}, find the opposite of each term.
-10+2\sqrt{15}
Subtract 8 from -2 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}