Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}-\sqrt{5}\right)^{2}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}-\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
3-5-\left(\sqrt{3}-\sqrt{5}\right)^{2}
The square of \sqrt{5} is 5.
-2-\left(\sqrt{3}-\sqrt{5}\right)^{2}
Subtract 5 from 3 to get -2.
-2-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{5}\right)^{2}.
-2-\left(3-2\sqrt{3}\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
The square of \sqrt{3} is 3.
-2-\left(3-2\sqrt{15}+\left(\sqrt{5}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-2-\left(3-2\sqrt{15}+5\right)
The square of \sqrt{5} is 5.
-2-\left(8-2\sqrt{15}\right)
Add 3 and 5 to get 8.
-2-8+2\sqrt{15}
To find the opposite of 8-2\sqrt{15}, find the opposite of each term.
-10+2\sqrt{15}
Subtract 8 from -2 to get -10.