Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4+\frac{1}{\left(\sqrt{3}+2\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\right)^{2}.
3+4\sqrt{3}+4+\frac{1}{\left(\sqrt{3}+2\right)^{2}}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+\frac{1}{\left(\sqrt{3}+2\right)^{2}}
Add 3 and 4 to get 7.
7+4\sqrt{3}+\frac{1}{\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\right)^{2}.
7+4\sqrt{3}+\frac{1}{3+4\sqrt{3}+4}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+\frac{1}{7+4\sqrt{3}}
Add 3 and 4 to get 7.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{7^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{49-\left(4\sqrt{3}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{49-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{49-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{49-16\times 3}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{49-48}
Multiply 16 and 3 to get 48.
7+4\sqrt{3}+\frac{7-4\sqrt{3}}{1}
Subtract 48 from 49 to get 1.
7+4\sqrt{3}+7-4\sqrt{3}
Anything divided by one gives itself.
14+4\sqrt{3}-4\sqrt{3}
Add 7 and 7 to get 14.
14
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.