Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}-1+\left(\sqrt{3}-1\right)^{2}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
3-1+\left(\sqrt{3}-1\right)^{2}
The square of \sqrt{3} is 3.
2+\left(\sqrt{3}-1\right)^{2}
Subtract 1 from 3 to get 2.
2+\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
2+3-2\sqrt{3}+1
The square of \sqrt{3} is 3.
2+4-2\sqrt{3}
Add 3 and 1 to get 4.
6-2\sqrt{3}
Add 2 and 4 to get 6.