Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\frac{\sqrt{3}+1}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
3+2\sqrt{3}+1-\left(\frac{\sqrt{3}+1}{2}\right)^{2}
The square of \sqrt{3} is 3.
4+2\sqrt{3}-\left(\frac{\sqrt{3}+1}{2}\right)^{2}
Add 3 and 1 to get 4.
4+2\sqrt{3}-\frac{\left(\sqrt{3}+1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{3}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
4+2\sqrt{3}-\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
4+2\sqrt{3}-\frac{3+2\sqrt{3}+1}{2^{2}}
The square of \sqrt{3} is 3.
4+2\sqrt{3}-\frac{4+2\sqrt{3}}{2^{2}}
Add 3 and 1 to get 4.
4+2\sqrt{3}-\frac{4+2\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{4\left(4+2\sqrt{3}\right)}{4}-\frac{4+2\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+2\sqrt{3} times \frac{4}{4}.
\frac{4\left(4+2\sqrt{3}\right)-\left(4+2\sqrt{3}\right)}{4}
Since \frac{4\left(4+2\sqrt{3}\right)}{4} and \frac{4+2\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16+8\sqrt{3}-4-2\sqrt{3}}{4}
Do the multiplications in 4\left(4+2\sqrt{3}\right)-\left(4+2\sqrt{3}\right).
\frac{12+6\sqrt{3}}{4}
Do the calculations in 16+8\sqrt{3}-4-2\sqrt{3}.
\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\frac{\sqrt{3}+1}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
3+2\sqrt{3}+1-\left(\frac{\sqrt{3}+1}{2}\right)^{2}
The square of \sqrt{3} is 3.
4+2\sqrt{3}-\left(\frac{\sqrt{3}+1}{2}\right)^{2}
Add 3 and 1 to get 4.
4+2\sqrt{3}-\frac{\left(\sqrt{3}+1\right)^{2}}{2^{2}}
To raise \frac{\sqrt{3}+1}{2} to a power, raise both numerator and denominator to the power and then divide.
4+2\sqrt{3}-\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
4+2\sqrt{3}-\frac{3+2\sqrt{3}+1}{2^{2}}
The square of \sqrt{3} is 3.
4+2\sqrt{3}-\frac{4+2\sqrt{3}}{2^{2}}
Add 3 and 1 to get 4.
4+2\sqrt{3}-\frac{4+2\sqrt{3}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{4\left(4+2\sqrt{3}\right)}{4}-\frac{4+2\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+2\sqrt{3} times \frac{4}{4}.
\frac{4\left(4+2\sqrt{3}\right)-\left(4+2\sqrt{3}\right)}{4}
Since \frac{4\left(4+2\sqrt{3}\right)}{4} and \frac{4+2\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{16+8\sqrt{3}-4-2\sqrt{3}}{4}
Do the multiplications in 4\left(4+2\sqrt{3}\right)-\left(4+2\sqrt{3}\right).
\frac{12+6\sqrt{3}}{4}
Do the calculations in 16+8\sqrt{3}-4-2\sqrt{3}.