Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1+\frac{1}{\left(\sqrt{3}+1\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
3+2\sqrt{3}+1+\frac{1}{\left(\sqrt{3}+1\right)^{2}}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\frac{1}{\left(\sqrt{3}+1\right)^{2}}
Add 3 and 1 to get 4.
4+2\sqrt{3}+\frac{1}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
4+2\sqrt{3}+\frac{1}{3+2\sqrt{3}+1}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\frac{1}{4+2\sqrt{3}}
Add 3 and 1 to get 4.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{4+2\sqrt{3}} by multiplying numerator and denominator by 4-2\sqrt{3}.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{4^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-\left(2\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-4\times 3}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-12}
Multiply 4 and 3 to get 12.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{4}
Subtract 12 from 16 to get 4.
\frac{4\left(4+2\sqrt{3}\right)}{4}+\frac{4-2\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+2\sqrt{3} times \frac{4}{4}.
\frac{4\left(4+2\sqrt{3}\right)+4-2\sqrt{3}}{4}
Since \frac{4\left(4+2\sqrt{3}\right)}{4} and \frac{4-2\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{16+8\sqrt{3}+4-2\sqrt{3}}{4}
Do the multiplications in 4\left(4+2\sqrt{3}\right)+4-2\sqrt{3}.
\frac{20+6\sqrt{3}}{4}
Do the calculations in 16+8\sqrt{3}+4-2\sqrt{3}.
\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1+\frac{1}{\left(\sqrt{3}+1\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
3+2\sqrt{3}+1+\frac{1}{\left(\sqrt{3}+1\right)^{2}}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\frac{1}{\left(\sqrt{3}+1\right)^{2}}
Add 3 and 1 to get 4.
4+2\sqrt{3}+\frac{1}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
4+2\sqrt{3}+\frac{1}{3+2\sqrt{3}+1}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\frac{1}{4+2\sqrt{3}}
Add 3 and 1 to get 4.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{4+2\sqrt{3}} by multiplying numerator and denominator by 4-2\sqrt{3}.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{4^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-\left(2\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-4\times 3}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{16-12}
Multiply 4 and 3 to get 12.
4+2\sqrt{3}+\frac{4-2\sqrt{3}}{4}
Subtract 12 from 16 to get 4.
\frac{4\left(4+2\sqrt{3}\right)}{4}+\frac{4-2\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+2\sqrt{3} times \frac{4}{4}.
\frac{4\left(4+2\sqrt{3}\right)+4-2\sqrt{3}}{4}
Since \frac{4\left(4+2\sqrt{3}\right)}{4} and \frac{4-2\sqrt{3}}{4} have the same denominator, add them by adding their numerators.
\frac{16+8\sqrt{3}+4-2\sqrt{3}}{4}
Do the multiplications in 4\left(4+2\sqrt{3}\right)+4-2\sqrt{3}.
\frac{20+6\sqrt{3}}{4}
Do the calculations in 16+8\sqrt{3}+4-2\sqrt{3}.