Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+\sqrt{2}\right)^{2}.
\left(3+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{3} is 3.
\left(3+2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(3+2\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(5+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)
Add 3 and 2 to get 5.
5\sqrt{3}-5\sqrt{2}+2\sqrt{6}\sqrt{3}-2\sqrt{6}\sqrt{2}
Use the distributive property to multiply 5+2\sqrt{6} by \sqrt{3}-\sqrt{2}.
5\sqrt{3}-5\sqrt{2}+2\sqrt{3}\sqrt{2}\sqrt{3}-2\sqrt{6}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
5\sqrt{3}-5\sqrt{2}+2\times 3\sqrt{2}-2\sqrt{6}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
5\sqrt{3}-5\sqrt{2}+6\sqrt{2}-2\sqrt{6}\sqrt{2}
Multiply 2 and 3 to get 6.
5\sqrt{3}+\sqrt{2}-2\sqrt{6}\sqrt{2}
Combine -5\sqrt{2} and 6\sqrt{2} to get \sqrt{2}.
5\sqrt{3}+\sqrt{2}-2\sqrt{2}\sqrt{3}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
5\sqrt{3}+\sqrt{2}-2\times 2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
5\sqrt{3}+\sqrt{2}-4\sqrt{3}
Multiply -2 and 2 to get -4.
\sqrt{3}+\sqrt{2}
Combine 5\sqrt{3} and -4\sqrt{3} to get \sqrt{3}.