Evaluate
72-18\sqrt{6}\approx 27.90918463
Expand
72-18\sqrt{6}
Share
Copied to clipboard
\left(\sqrt{3}+2\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(3\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\left(3\sqrt{3}-3\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
9\left(\sqrt{3}\right)^{2}-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-3\sqrt{2}\right)^{2}.
9\times 3-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{3} is 3.
27-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 3 to get 27.
27-18\sqrt{6}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-18\sqrt{6}+9\times 2+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{2} is 2.
27-18\sqrt{6}+18+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 2 to get 18.
45-18\sqrt{6}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Add 27 and 18 to get 45.
45-18\sqrt{6}+\left(\sqrt{3}-2\sqrt{3}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
45-18\sqrt{6}+\left(-\sqrt{3}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and -2\sqrt{3} to get -\sqrt{3}.
45-18\sqrt{6}+\left(-\sqrt{3}+4\sqrt{3}\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
45-18\sqrt{6}+\left(3\sqrt{3}\right)^{2}
Combine -\sqrt{3} and 4\sqrt{3} to get 3\sqrt{3}.
45-18\sqrt{6}+3^{2}\left(\sqrt{3}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
45-18\sqrt{6}+9\left(\sqrt{3}\right)^{2}
Calculate 3 to the power of 2 and get 9.
45-18\sqrt{6}+9\times 3
The square of \sqrt{3} is 3.
45-18\sqrt{6}+27
Multiply 9 and 3 to get 27.
72-18\sqrt{6}
Add 45 and 27 to get 72.
\left(\sqrt{3}+2\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(3\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\left(3\sqrt{3}-3\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
9\left(\sqrt{3}\right)^{2}-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-3\sqrt{2}\right)^{2}.
9\times 3-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{3} is 3.
27-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 3 to get 27.
27-18\sqrt{6}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-18\sqrt{6}+9\times 2+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{2} is 2.
27-18\sqrt{6}+18+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 2 to get 18.
45-18\sqrt{6}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Add 27 and 18 to get 45.
45-18\sqrt{6}+\left(\sqrt{3}-2\sqrt{3}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
45-18\sqrt{6}+\left(-\sqrt{3}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and -2\sqrt{3} to get -\sqrt{3}.
45-18\sqrt{6}+\left(-\sqrt{3}+4\sqrt{3}\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
45-18\sqrt{6}+\left(3\sqrt{3}\right)^{2}
Combine -\sqrt{3} and 4\sqrt{3} to get 3\sqrt{3}.
45-18\sqrt{6}+3^{2}\left(\sqrt{3}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
45-18\sqrt{6}+9\left(\sqrt{3}\right)^{2}
Calculate 3 to the power of 2 and get 9.
45-18\sqrt{6}+9\times 3
The square of \sqrt{3} is 3.
45-18\sqrt{6}+27
Multiply 9 and 3 to get 27.
72-18\sqrt{6}
Add 45 and 27 to get 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}