Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}+2\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(3\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\left(3\sqrt{3}-3\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
9\left(\sqrt{3}\right)^{2}-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-3\sqrt{2}\right)^{2}.
9\times 3-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{3} is 3.
27-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 3 to get 27.
27-18\sqrt{6}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-18\sqrt{6}+9\times 2+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{2} is 2.
27-18\sqrt{6}+18+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 2 to get 18.
45-18\sqrt{6}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Add 27 and 18 to get 45.
45-18\sqrt{6}+\left(\sqrt{3}-2\sqrt{3}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
45-18\sqrt{6}+\left(-\sqrt{3}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and -2\sqrt{3} to get -\sqrt{3}.
45-18\sqrt{6}+\left(-\sqrt{3}+4\sqrt{3}\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
45-18\sqrt{6}+\left(3\sqrt{3}\right)^{2}
Combine -\sqrt{3} and 4\sqrt{3} to get 3\sqrt{3}.
45-18\sqrt{6}+3^{2}\left(\sqrt{3}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
45-18\sqrt{6}+9\left(\sqrt{3}\right)^{2}
Calculate 3 to the power of 2 and get 9.
45-18\sqrt{6}+9\times 3
The square of \sqrt{3} is 3.
45-18\sqrt{6}+27
Multiply 9 and 3 to get 27.
72-18\sqrt{6}
Add 45 and 27 to get 72.
\left(\sqrt{3}+2\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(3\sqrt{3}-\sqrt{18}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\left(3\sqrt{3}-3\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
9\left(\sqrt{3}\right)^{2}-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-3\sqrt{2}\right)^{2}.
9\times 3-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{3} is 3.
27-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 3 to get 27.
27-18\sqrt{6}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-18\sqrt{6}+9\times 2+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
The square of \sqrt{2} is 2.
27-18\sqrt{6}+18+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Multiply 9 and 2 to get 18.
45-18\sqrt{6}+\left(\sqrt{3}-\sqrt{12}+\sqrt{48}\right)^{2}
Add 27 and 18 to get 45.
45-18\sqrt{6}+\left(\sqrt{3}-2\sqrt{3}+\sqrt{48}\right)^{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
45-18\sqrt{6}+\left(-\sqrt{3}+\sqrt{48}\right)^{2}
Combine \sqrt{3} and -2\sqrt{3} to get -\sqrt{3}.
45-18\sqrt{6}+\left(-\sqrt{3}+4\sqrt{3}\right)^{2}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
45-18\sqrt{6}+\left(3\sqrt{3}\right)^{2}
Combine -\sqrt{3} and 4\sqrt{3} to get 3\sqrt{3}.
45-18\sqrt{6}+3^{2}\left(\sqrt{3}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
45-18\sqrt{6}+9\left(\sqrt{3}\right)^{2}
Calculate 3 to the power of 2 and get 9.
45-18\sqrt{6}+9\times 3
The square of \sqrt{3} is 3.
45-18\sqrt{6}+27
Multiply 9 and 3 to get 27.
72-18\sqrt{6}
Add 45 and 27 to get 72.