Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{3}+2\sqrt{3}\right)^{2}=27
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(3\sqrt{3}\right)^{2}=27
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
3^{2}\left(\sqrt{3}\right)^{2}=27
Expand \left(3\sqrt{3}\right)^{2}.
9\left(\sqrt{3}\right)^{2}=27
Calculate 3 to the power of 2 and get 9.
9\times 3=27
The square of \sqrt{3} is 3.
27=27
Multiply 9 and 3 to get 27.
\text{true}
Compare 27 and 27.