Evaluate
\frac{49}{12}\approx 4.083333333
Factor
\frac{7 ^ {2}}{2 ^ {2} \cdot 3} = 4\frac{1}{12} = 4.083333333333333
Share
Copied to clipboard
\left(\sqrt{3}+\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{3}}{2}\right)^{2}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\sqrt{3}+\frac{2\sqrt{3}}{3}-\frac{\sqrt{3}}{2}\right)^{2}
The square of \sqrt{3} is 3.
\left(\frac{5}{3}\sqrt{3}-\frac{\sqrt{3}}{2}\right)^{2}
Combine \sqrt{3} and \frac{2\sqrt{3}}{3} to get \frac{5}{3}\sqrt{3}.
\left(\frac{7}{6}\sqrt{3}\right)^{2}
Combine \frac{5}{3}\sqrt{3} and -\frac{\sqrt{3}}{2} to get \frac{7}{6}\sqrt{3}.
\left(\frac{7}{6}\right)^{2}\left(\sqrt{3}\right)^{2}
Expand \left(\frac{7}{6}\sqrt{3}\right)^{2}.
\frac{49}{36}\left(\sqrt{3}\right)^{2}
Calculate \frac{7}{6} to the power of 2 and get \frac{49}{36}.
\frac{49}{36}\times 3
The square of \sqrt{3} is 3.
\frac{49}{12}
Multiply \frac{49}{36} and 3 to get \frac{49}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}