Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(3\sqrt{3}-3\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
9\left(\sqrt{3}\right)^{2}-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-3\sqrt{2}\right)^{2}.
9\times 3-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
27-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Multiply 9 and 3 to get 27.
27-18\sqrt{6}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-18\sqrt{6}+9\times 2+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
27-18\sqrt{6}+18+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Multiply 9 and 2 to get 18.
45-18\sqrt{6}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Add 27 and 18 to get 45.
45-18\sqrt{6}+\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\sqrt{2}\right)^{2}.
45-18\sqrt{6}+3+4\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
45-18\sqrt{6}+3+4\sqrt{6}+4\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
45-18\sqrt{6}+3+4\sqrt{6}+4\times 2
The square of \sqrt{2} is 2.
45-18\sqrt{6}+3+4\sqrt{6}+8
Multiply 4 and 2 to get 8.
45-18\sqrt{6}+11+4\sqrt{6}
Add 3 and 8 to get 11.
56-18\sqrt{6}+4\sqrt{6}
Add 45 and 11 to get 56.
56-14\sqrt{6}
Combine -18\sqrt{6} and 4\sqrt{6} to get -14\sqrt{6}.
\left(3\sqrt{3}-3\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
9\left(\sqrt{3}\right)^{2}-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-3\sqrt{2}\right)^{2}.
9\times 3-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
27-18\sqrt{3}\sqrt{2}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Multiply 9 and 3 to get 27.
27-18\sqrt{6}+9\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
27-18\sqrt{6}+9\times 2+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
27-18\sqrt{6}+18+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Multiply 9 and 2 to get 18.
45-18\sqrt{6}+\left(\sqrt{3}+2\sqrt{2}\right)^{2}
Add 27 and 18 to get 45.
45-18\sqrt{6}+\left(\sqrt{3}\right)^{2}+4\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\sqrt{2}\right)^{2}.
45-18\sqrt{6}+3+4\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
45-18\sqrt{6}+3+4\sqrt{6}+4\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
45-18\sqrt{6}+3+4\sqrt{6}+4\times 2
The square of \sqrt{2} is 2.
45-18\sqrt{6}+3+4\sqrt{6}+8
Multiply 4 and 2 to get 8.
45-18\sqrt{6}+11+4\sqrt{6}
Add 3 and 8 to get 11.
56-18\sqrt{6}+4\sqrt{6}
Add 45 and 11 to get 56.
56-14\sqrt{6}
Combine -18\sqrt{6} and 4\sqrt{6} to get -14\sqrt{6}.