Evaluate
\frac{20\sqrt{3}}{3}-3\sqrt{30}\approx -4.884671341
Share
Copied to clipboard
\left(2\sqrt{6}-3\sqrt{15}+2\sqrt{\frac{2\times 3+2}{3}}\right)\sqrt{2}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\left(2\sqrt{6}-3\sqrt{15}+2\sqrt{\frac{6+2}{3}}\right)\sqrt{2}
Multiply 2 and 3 to get 6.
\left(2\sqrt{6}-3\sqrt{15}+2\sqrt{\frac{8}{3}}\right)\sqrt{2}
Add 6 and 2 to get 8.
\left(2\sqrt{6}-3\sqrt{15}+2\times \frac{\sqrt{8}}{\sqrt{3}}\right)\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\left(2\sqrt{6}-3\sqrt{15}+2\times \frac{2\sqrt{2}}{\sqrt{3}}\right)\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{6}-3\sqrt{15}+2\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\sqrt{2}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(2\sqrt{6}-3\sqrt{15}+2\times \frac{2\sqrt{2}\sqrt{3}}{3}\right)\sqrt{2}
The square of \sqrt{3} is 3.
\left(2\sqrt{6}-3\sqrt{15}+2\times \frac{2\sqrt{6}}{3}\right)\sqrt{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\left(2\sqrt{6}-3\sqrt{15}+\frac{2\times 2\sqrt{6}}{3}\right)\sqrt{2}
Express 2\times \frac{2\sqrt{6}}{3} as a single fraction.
\left(\frac{3\left(2\sqrt{6}-3\sqrt{15}\right)}{3}+\frac{2\times 2\sqrt{6}}{3}\right)\sqrt{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{6}-3\sqrt{15} times \frac{3}{3}.
\frac{3\left(2\sqrt{6}-3\sqrt{15}\right)+2\times 2\sqrt{6}}{3}\sqrt{2}
Since \frac{3\left(2\sqrt{6}-3\sqrt{15}\right)}{3} and \frac{2\times 2\sqrt{6}}{3} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{6}-9\sqrt{15}+4\sqrt{6}}{3}\sqrt{2}
Do the multiplications in 3\left(2\sqrt{6}-3\sqrt{15}\right)+2\times 2\sqrt{6}.
\frac{10\sqrt{6}-9\sqrt{15}}{3}\sqrt{2}
Do the calculations in 6\sqrt{6}-9\sqrt{15}+4\sqrt{6}.
\frac{\left(10\sqrt{6}-9\sqrt{15}\right)\sqrt{2}}{3}
Express \frac{10\sqrt{6}-9\sqrt{15}}{3}\sqrt{2} as a single fraction.
\frac{10\sqrt{6}\sqrt{2}-9\sqrt{15}\sqrt{2}}{3}
Use the distributive property to multiply 10\sqrt{6}-9\sqrt{15} by \sqrt{2}.
\frac{10\sqrt{2}\sqrt{3}\sqrt{2}-9\sqrt{15}\sqrt{2}}{3}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{10\times 2\sqrt{3}-9\sqrt{15}\sqrt{2}}{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{20\sqrt{3}-9\sqrt{15}\sqrt{2}}{3}
Multiply 10 and 2 to get 20.
\frac{20\sqrt{3}-9\sqrt{30}}{3}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}