Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{6}-\sqrt{\frac{1}{2}}-\left(\frac{1}{8}+\sqrt{6}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\sqrt{6}-\frac{\sqrt{1}}{\sqrt{2}}-\left(\frac{1}{8}+\sqrt{6}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
2\sqrt{6}-\frac{1}{\sqrt{2}}-\left(\frac{1}{8}+\sqrt{6}\right)
Calculate the square root of 1 and get 1.
2\sqrt{6}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(\frac{1}{8}+\sqrt{6}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{6}-\frac{\sqrt{2}}{2}-\left(\frac{1}{8}+\sqrt{6}\right)
The square of \sqrt{2} is 2.
\frac{2\times 2\sqrt{6}}{2}-\frac{\sqrt{2}}{2}-\left(\frac{1}{8}+\sqrt{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{6} times \frac{2}{2}.
\frac{2\times 2\sqrt{6}-\sqrt{2}}{2}-\left(\frac{1}{8}+\sqrt{6}\right)
Since \frac{2\times 2\sqrt{6}}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{6}-\sqrt{2}}{2}-\left(\frac{1}{8}+\sqrt{6}\right)
Do the multiplications in 2\times 2\sqrt{6}-\sqrt{2}.
\frac{4\sqrt{6}-\sqrt{2}}{2}-\frac{1}{8}-\sqrt{6}
To find the opposite of \frac{1}{8}+\sqrt{6}, find the opposite of each term.
\frac{4\left(4\sqrt{6}-\sqrt{2}\right)}{8}-\frac{1}{8}-\sqrt{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 8 is 8. Multiply \frac{4\sqrt{6}-\sqrt{2}}{2} times \frac{4}{4}.
\frac{4\left(4\sqrt{6}-\sqrt{2}\right)-1}{8}-\sqrt{6}
Since \frac{4\left(4\sqrt{6}-\sqrt{2}\right)}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{16\sqrt{6}-4\sqrt{2}-1}{8}-\sqrt{6}
Do the multiplications in 4\left(4\sqrt{6}-\sqrt{2}\right)-1.
\frac{16\sqrt{6}-4\sqrt{2}-1}{8}-\frac{8\sqrt{6}}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{8}{8}.
\frac{16\sqrt{6}-4\sqrt{2}-1-8\sqrt{6}}{8}
Since \frac{16\sqrt{6}-4\sqrt{2}-1}{8} and \frac{8\sqrt{6}}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{8\sqrt{6}-4\sqrt{2}-1}{8}
Do the calculations in 16\sqrt{6}-4\sqrt{2}-1-8\sqrt{6}.