Evaluate
2\left(\sqrt{3}-12\right)\approx -20.535898385
Factor
2 {(\sqrt{3} - 12)} = -20.535898385
Share
Copied to clipboard
\left(2\sqrt{6}+\sqrt{24}\right)\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\left(2\sqrt{6}+2\sqrt{6}\right)\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
4\sqrt{6}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Combine 2\sqrt{6} and 2\sqrt{6} to get 4\sqrt{6}.
4\sqrt{6}\left(\frac{\sqrt{1}}{\sqrt{8}}-\sqrt{6}\right)
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
4\sqrt{6}\left(\frac{1}{\sqrt{8}}-\sqrt{6}\right)
Calculate the square root of 1 and get 1.
4\sqrt{6}\left(\frac{1}{2\sqrt{2}}-\sqrt{6}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
4\sqrt{6}\left(\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{6}\right)
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{6}\left(\frac{\sqrt{2}}{2\times 2}-\sqrt{6}\right)
The square of \sqrt{2} is 2.
4\sqrt{6}\left(\frac{\sqrt{2}}{4}-\sqrt{6}\right)
Multiply 2 and 2 to get 4.
4\sqrt{6}\left(\frac{\sqrt{2}}{4}-\frac{4\sqrt{6}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{4}{4}.
4\sqrt{6}\times \frac{\sqrt{2}-4\sqrt{6}}{4}
Since \frac{\sqrt{2}}{4} and \frac{4\sqrt{6}}{4} have the same denominator, subtract them by subtracting their numerators.
\left(\sqrt{2}-4\sqrt{6}\right)\sqrt{6}
Cancel out 4 and 4.
\sqrt{2}\sqrt{6}-4\left(\sqrt{6}\right)^{2}
Use the distributive property to multiply \sqrt{2}-4\sqrt{6} by \sqrt{6}.
\sqrt{2}\sqrt{2}\sqrt{3}-4\left(\sqrt{6}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}-4\left(\sqrt{6}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{3}-4\times 6
The square of \sqrt{6} is 6.
2\sqrt{3}-24
Multiply -4 and 6 to get -24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}