Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}-3i\sqrt{5}\right)\left(\sqrt{6}-i\times 2\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(\sqrt{2}-3i\sqrt{5}\right)\left(\sqrt{6}-2i\sqrt{2}\right)
Multiply -1 and 3i to get -3i.
\sqrt{2}\sqrt{6}-2i\left(\sqrt{2}\right)^{2}-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Apply the distributive property by multiplying each term of \sqrt{2}-3i\sqrt{5} by each term of \sqrt{6}-2i\sqrt{2}.
\sqrt{2}\sqrt{2}\sqrt{3}-2i\left(\sqrt{2}\right)^{2}-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}-2i\left(\sqrt{2}\right)^{2}-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{3}-2i\times 2-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
The square of \sqrt{2} is 2.
2\sqrt{3}-4i-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Multiply -2i and 2 to get -4i.
2\sqrt{3}-4i-3i\sqrt{30}-6\sqrt{5}\sqrt{2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
2\sqrt{3}-4i-3i\sqrt{30}-6\sqrt{10}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.