Evaluate
-3\sqrt{30}i+2\sqrt{3}-6\sqrt{10}-4i\approx -15.509564346-20.431676725i
Real Part
2 {(\sqrt{3} - 3 \sqrt{10})} = -15.509564346
Share
Copied to clipboard
\left(\sqrt{2}-3i\sqrt{5}\right)\left(\sqrt{6}-i\times 2\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(\sqrt{2}-3i\sqrt{5}\right)\left(\sqrt{6}-2i\sqrt{2}\right)
Multiply -1 and 3i to get -3i.
\sqrt{2}\sqrt{6}-2i\left(\sqrt{2}\right)^{2}-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Apply the distributive property by multiplying each term of \sqrt{2}-3i\sqrt{5} by each term of \sqrt{6}-2i\sqrt{2}.
\sqrt{2}\sqrt{2}\sqrt{3}-2i\left(\sqrt{2}\right)^{2}-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}-2i\left(\sqrt{2}\right)^{2}-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{3}-2i\times 2-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
The square of \sqrt{2} is 2.
2\sqrt{3}-4i-3i\sqrt{5}\sqrt{6}-6\sqrt{5}\sqrt{2}
Multiply -2i and 2 to get -4i.
2\sqrt{3}-4i-3i\sqrt{30}-6\sqrt{5}\sqrt{2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
2\sqrt{3}-4i-3i\sqrt{30}-6\sqrt{10}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}