Evaluate
6-2\sqrt{2}\approx 3.171572875
Share
Copied to clipboard
\left(\sqrt{2}\right)^{2}-4\sqrt{2}+4+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-2\right)^{2}.
2-4\sqrt{2}+4+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
The square of \sqrt{2} is 2.
6-4\sqrt{2}+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
Add 2 and 4 to get 6.
6-4\sqrt{2}+\frac{\sqrt{\frac{3+2}{3}}}{\sqrt{\frac{5}{24}}}
Multiply 1 and 3 to get 3.
6-4\sqrt{2}+\frac{\sqrt{\frac{5}{3}}}{\sqrt{\frac{5}{24}}}
Add 3 and 2 to get 5.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{5}{24}}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{5}{24}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{5}{24}}}
The square of \sqrt{3} is 3.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{5}{24}}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{\sqrt{24}}}
Rewrite the square root of the division \sqrt{\frac{5}{24}} as the division of square roots \frac{\sqrt{5}}{\sqrt{24}}.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{2\sqrt{6}}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{2\times 6}}
The square of \sqrt{6} is 6.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{2\times 6}}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{12}}
Multiply 2 and 6 to get 12.
6-4\sqrt{2}+\frac{\sqrt{15}\times 12}{3\sqrt{30}}
Divide \frac{\sqrt{15}}{3} by \frac{\sqrt{30}}{12} by multiplying \frac{\sqrt{15}}{3} by the reciprocal of \frac{\sqrt{30}}{12}.
6-4\sqrt{2}+\frac{4\sqrt{15}}{\sqrt{30}}
Cancel out 3 in both numerator and denominator.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{30}}{\left(\sqrt{30}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{15}}{\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{30}}{30}
The square of \sqrt{30} is 30.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{15}\sqrt{2}}{30}
Factor 30=15\times 2. Rewrite the square root of the product \sqrt{15\times 2} as the product of square roots \sqrt{15}\sqrt{2}.
6-4\sqrt{2}+\frac{4\times 15\sqrt{2}}{30}
Multiply \sqrt{15} and \sqrt{15} to get 15.
6-4\sqrt{2}+\frac{60\sqrt{2}}{30}
Multiply 4 and 15 to get 60.
6-4\sqrt{2}+2\sqrt{2}
Divide 60\sqrt{2} by 30 to get 2\sqrt{2}.
6-2\sqrt{2}
Combine -4\sqrt{2} and 2\sqrt{2} to get -2\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}