Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}+3\times 4\sqrt{\frac{1}{3}}\sqrt{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-2\sqrt{3}\right)^{2}.
2-4\sqrt{2}\sqrt{3}+4\left(\sqrt{3}\right)^{2}+3\times 4\sqrt{\frac{1}{3}}\sqrt{2}
The square of \sqrt{2} is 2.
2-4\sqrt{6}+4\left(\sqrt{3}\right)^{2}+3\times 4\sqrt{\frac{1}{3}}\sqrt{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2-4\sqrt{6}+4\times 3+3\times 4\sqrt{\frac{1}{3}}\sqrt{2}
The square of \sqrt{3} is 3.
2-4\sqrt{6}+12+3\times 4\sqrt{\frac{1}{3}}\sqrt{2}
Multiply 4 and 3 to get 12.
14-4\sqrt{6}+3\times 4\sqrt{\frac{1}{3}}\sqrt{2}
Add 2 and 12 to get 14.
14-4\sqrt{6}+12\sqrt{\frac{1}{3}}\sqrt{2}
Multiply 3 and 4 to get 12.
14-4\sqrt{6}+12\times \frac{\sqrt{1}}{\sqrt{3}}\sqrt{2}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
14-4\sqrt{6}+12\times \frac{1}{\sqrt{3}}\sqrt{2}
Calculate the square root of 1 and get 1.
14-4\sqrt{6}+12\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{2}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
14-4\sqrt{6}+12\times \frac{\sqrt{3}}{3}\sqrt{2}
The square of \sqrt{3} is 3.
14-4\sqrt{6}+4\sqrt{3}\sqrt{2}
Cancel out 3, the greatest common factor in 12 and 3.
14-4\sqrt{6}+4\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
14
Combine -4\sqrt{6} and 4\sqrt{6} to get 0.