Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1+2\sqrt{8}-\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
2-2\sqrt{2}+1+2\sqrt{8}-\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)
The square of \sqrt{2} is 2.
3-2\sqrt{2}+2\sqrt{8}-\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)
Add 2 and 1 to get 3.
3-2\sqrt{2}+2\times 2\sqrt{2}-\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
3-2\sqrt{2}+4\sqrt{2}-\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)
Multiply 2 and 2 to get 4.
3+2\sqrt{2}-\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)
Combine -2\sqrt{2} and 4\sqrt{2} to get 2\sqrt{2}.
3+2\sqrt{2}-\left(\left(\sqrt{5}\right)^{2}-4\right)
Consider \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
3+2\sqrt{2}-\left(5-4\right)
The square of \sqrt{5} is 5.
3+2\sqrt{2}-1
Subtract 4 from 5 to get 1.
2+2\sqrt{2}
Subtract 1 from 3 to get 2.