Evaluate
6-3\sqrt{2}\approx 1.757359313
Share
Copied to clipboard
\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
2-2\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
The square of \sqrt{2} is 2.
3-2\sqrt{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Add 2 and 1 to get 3.
3-2\sqrt{2}+\left(\sqrt{3}\right)^{2}-\sqrt{3}\sqrt{6}+\sqrt{8}
Use the distributive property to multiply \sqrt{3} by \sqrt{3}-\sqrt{6}.
3-2\sqrt{2}+3-\sqrt{3}\sqrt{6}+\sqrt{8}
The square of \sqrt{3} is 3.
3-2\sqrt{2}+3-\sqrt{3}\sqrt{3}\sqrt{2}+\sqrt{8}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3-2\sqrt{2}+3-3\sqrt{2}+\sqrt{8}
Multiply \sqrt{3} and \sqrt{3} to get 3.
6-2\sqrt{2}-3\sqrt{2}+\sqrt{8}
Add 3 and 3 to get 6.
6-5\sqrt{2}+\sqrt{8}
Combine -2\sqrt{2} and -3\sqrt{2} to get -5\sqrt{2}.
6-5\sqrt{2}+2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
6-3\sqrt{2}
Combine -5\sqrt{2} and 2\sqrt{2} to get -3\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}