Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
2-2\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
The square of \sqrt{2} is 2.
3-2\sqrt{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Add 2 and 1 to get 3.
3-2\sqrt{2}+\left(\sqrt{3}\right)^{2}-\sqrt{3}\sqrt{6}+\sqrt{8}
Use the distributive property to multiply \sqrt{3} by \sqrt{3}-\sqrt{6}.
3-2\sqrt{2}+3-\sqrt{3}\sqrt{6}+\sqrt{8}
The square of \sqrt{3} is 3.
3-2\sqrt{2}+3-\sqrt{3}\sqrt{3}\sqrt{2}+\sqrt{8}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3-2\sqrt{2}+3-3\sqrt{2}+\sqrt{8}
Multiply \sqrt{3} and \sqrt{3} to get 3.
6-2\sqrt{2}-3\sqrt{2}+\sqrt{8}
Add 3 and 3 to get 6.
6-5\sqrt{2}+\sqrt{8}
Combine -2\sqrt{2} and -3\sqrt{2} to get -5\sqrt{2}.
6-5\sqrt{2}+2\sqrt{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
6-3\sqrt{2}
Combine -5\sqrt{2} and 2\sqrt{2} to get -3\sqrt{2}.