Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}-\sqrt{6}\right)\times 3\sqrt{2}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(3\sqrt{2}-3\sqrt{6}\right)\sqrt{2}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Use the distributive property to multiply \sqrt{2}-\sqrt{6} by 3.
3\left(\sqrt{2}\right)^{2}-3\sqrt{6}\sqrt{2}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Use the distributive property to multiply 3\sqrt{2}-3\sqrt{6} by \sqrt{2}.
3\times 2-3\sqrt{6}\sqrt{2}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
The square of \sqrt{2} is 2.
6-3\sqrt{6}\sqrt{2}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Multiply 3 and 2 to get 6.
6-3\sqrt{2}\sqrt{3}\sqrt{2}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-3\times 2\sqrt{3}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-6\sqrt{3}-3\sqrt{\frac{1}{3}}\times 2\sqrt{18}\sqrt{\frac{2}{3}}-\left(1-\sqrt{1}\right)
Multiply -3 and 2 to get -6.
6-6\sqrt{3}-3\sqrt{\frac{2}{9}}\times 2\sqrt{18}-\left(1-\sqrt{1}\right)
To multiply \sqrt{\frac{1}{3}} and \sqrt{\frac{2}{3}}, multiply the numbers under the square root.
6-6\sqrt{3}-3\times \frac{\sqrt{2}}{\sqrt{9}}\times 2\sqrt{18}-\left(1-\sqrt{1}\right)
Rewrite the square root of the division \sqrt{\frac{2}{9}} as the division of square roots \frac{\sqrt{2}}{\sqrt{9}}.
6-6\sqrt{3}-3\times \frac{\sqrt{2}}{3}\times 2\sqrt{18}-\left(1-\sqrt{1}\right)
Calculate the square root of 9 and get 3.
6-6\sqrt{3}-6\times \frac{\sqrt{2}}{3}\sqrt{18}-\left(1-\sqrt{1}\right)
Multiply 3 and 2 to get 6.
6-6\sqrt{3}-6\times \frac{\sqrt{2}}{3}\times 3\sqrt{2}-\left(1-\sqrt{1}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
6-6\sqrt{3}-18\times \frac{\sqrt{2}}{3}\sqrt{2}-\left(1-\sqrt{1}\right)
Multiply 6 and 3 to get 18.
6-6\sqrt{3}-6\sqrt{2}\sqrt{2}-\left(1-\sqrt{1}\right)
Cancel out 3, the greatest common factor in 18 and 3.
6-6\sqrt{3}-6\sqrt{2}\sqrt{2}-\left(1-1\right)
Calculate the square root of 1 and get 1.
6-6\sqrt{3}-6\sqrt{2}\sqrt{2}-0
Subtract 1 from 1 to get 0.
6-6\sqrt{3}-6\times 2-0
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-6\sqrt{3}-12-0
Multiply 6 and 2 to get 12.
-6-6\sqrt{3}-0
Subtract 12 from 6 to get -6.
-6-6\sqrt{3}+0
Multiply -1 and 0 to get 0.
-6-6\sqrt{3}
Add -6 and 0 to get -6.