Evaluate
\sqrt{2}\left(-2+2i\right)+\sqrt{6}\left(2+2i\right)\approx 2.070552361+7.72740661i
Real Part
2 \sqrt{2} {(\sqrt{3} - 1)} = 2.070552361
Share
Copied to clipboard
\left(1-i\right)\sqrt{2}\left(-2+2i\sqrt{3}\right)
Combine \sqrt{2} and -i\sqrt{2} to get \left(1-i\right)\sqrt{2}.
\left(-2+2i\right)\sqrt{2}+\left(2+2i\right)\sqrt{3}\sqrt{2}
Use the distributive property to multiply \left(1-i\right)\sqrt{2} by -2+2i\sqrt{3}.
\left(-2+2i\right)\sqrt{2}+\left(2+2i\right)\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}