Evaluate
\frac{62}{27}\approx 2.296296296
Factor
\frac{2 \cdot 31}{3 ^ {3}} = 2\frac{8}{27} = 2.2962962962962963
Share
Copied to clipboard
2+2\times \left(\frac{2\sqrt{3}}{9}\right)^{2}
The square of \sqrt{2} is 2.
2+2\times \frac{\left(2\sqrt{3}\right)^{2}}{9^{2}}
To raise \frac{2\sqrt{3}}{9} to a power, raise both numerator and denominator to the power and then divide.
2+\frac{2\times \left(2\sqrt{3}\right)^{2}}{9^{2}}
Express 2\times \frac{\left(2\sqrt{3}\right)^{2}}{9^{2}} as a single fraction.
\frac{2\times 9^{2}}{9^{2}}+\frac{2\times \left(2\sqrt{3}\right)^{2}}{9^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{9^{2}}{9^{2}}.
\frac{2\times 9^{2}+2\times \left(2\sqrt{3}\right)^{2}}{9^{2}}
Since \frac{2\times 9^{2}}{9^{2}} and \frac{2\times \left(2\sqrt{3}\right)^{2}}{9^{2}} have the same denominator, add them by adding their numerators.
2+\frac{2\times 2^{2}\left(\sqrt{3}\right)^{2}}{9^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
2+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{9^{2}}
Calculate 2 to the power of 2 and get 4.
2+\frac{2\times 4\times 3}{9^{2}}
The square of \sqrt{3} is 3.
2+\frac{2\times 12}{9^{2}}
Multiply 4 and 3 to get 12.
2+\frac{24}{9^{2}}
Multiply 2 and 12 to get 24.
2+\frac{24}{81}
Calculate 9 to the power of 2 and get 81.
2+\frac{8}{27}
Reduce the fraction \frac{24}{81} to lowest terms by extracting and canceling out 3.
\frac{62}{27}
Add 2 and \frac{8}{27} to get \frac{62}{27}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}