Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{2}\right)^{3}+3\left(\sqrt{2}\right)^{2}+3\sqrt{2}+1-\left(\sqrt{2}-1\right)^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(\sqrt{2}+1\right)^{3}.
\left(\sqrt{2}\right)^{3}+3\times 2+3\sqrt{2}+1-\left(\sqrt{2}-1\right)^{3}
The square of \sqrt{2} is 2.
\left(\sqrt{2}\right)^{3}+6+3\sqrt{2}+1-\left(\sqrt{2}-1\right)^{3}
Multiply 3 and 2 to get 6.
\left(\sqrt{2}\right)^{3}+7+3\sqrt{2}-\left(\sqrt{2}-1\right)^{3}
Add 6 and 1 to get 7.
\left(\sqrt{2}\right)^{3}+7+3\sqrt{2}-\left(\left(\sqrt{2}\right)^{3}-3\left(\sqrt{2}\right)^{2}+3\sqrt{2}-1\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\sqrt{2}-1\right)^{3}.
\left(\sqrt{2}\right)^{3}+7+3\sqrt{2}-\left(\left(\sqrt{2}\right)^{3}-3\times 2+3\sqrt{2}-1\right)
The square of \sqrt{2} is 2.
\left(\sqrt{2}\right)^{3}+7+3\sqrt{2}-\left(\left(\sqrt{2}\right)^{3}-6+3\sqrt{2}-1\right)
Multiply -3 and 2 to get -6.
\left(\sqrt{2}\right)^{3}+7+3\sqrt{2}-\left(\left(\sqrt{2}\right)^{3}-7+3\sqrt{2}\right)
Subtract 1 from -6 to get -7.
\left(\sqrt{2}\right)^{3}+7+3\sqrt{2}-\left(\sqrt{2}\right)^{3}+7-3\sqrt{2}
To find the opposite of \left(\sqrt{2}\right)^{3}-7+3\sqrt{2}, find the opposite of each term.
7+3\sqrt{2}+7-3\sqrt{2}
Combine \left(\sqrt{2}\right)^{3} and -\left(\sqrt{2}\right)^{3} to get 0.
14+3\sqrt{2}-3\sqrt{2}
Add 7 and 7 to get 14.
14
Combine 3\sqrt{2} and -3\sqrt{2} to get 0.