Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{2}+\sqrt{\frac{6}{2}}}{\sqrt{6}}-\frac{1}{2-\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}+\sqrt{3}}{\sqrt{6}}-\frac{1}{2-\sqrt{3}}
Divide 6 by 2 to get 3.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{1}{2-\sqrt{3}}
Rationalize the denominator of \frac{3\sqrt{2}+\sqrt{3}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{1}{2-\sqrt{3}}
The square of \sqrt{6} is 6.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-2-\sqrt{3}
To find the opposite of 2+\sqrt{3}, find the opposite of each term.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}+\frac{6\left(-2-\sqrt{3}\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2-\sqrt{3} times \frac{6}{6}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}+6\left(-2-\sqrt{3}\right)}{6}
Since \frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6} and \frac{6\left(-2-\sqrt{3}\right)}{6} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{3}+3\sqrt{2}-12-6\sqrt{3}}{6}
Do the multiplications in \left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}+6\left(-2-\sqrt{3}\right).
\frac{3\sqrt{2}-12}{6}
Do the calculations in 6\sqrt{3}+3\sqrt{2}-12-6\sqrt{3}.