Evaluate
\frac{\sqrt{2}}{2}-2\approx -1.292893219
Share
Copied to clipboard
\frac{3\sqrt{2}+\sqrt{\frac{6}{2}}}{\sqrt{6}}-\frac{1}{2-\sqrt{3}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{3\sqrt{2}+\sqrt{3}}{\sqrt{6}}-\frac{1}{2-\sqrt{3}}
Divide 6 by 2 to get 3.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-\frac{1}{2-\sqrt{3}}
Rationalize the denominator of \frac{3\sqrt{2}+\sqrt{3}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{1}{2-\sqrt{3}}
The square of \sqrt{6} is 6.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\frac{2+\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}-2-\sqrt{3}
To find the opposite of 2+\sqrt{3}, find the opposite of each term.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6}+\frac{6\left(-2-\sqrt{3}\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2-\sqrt{3} times \frac{6}{6}.
\frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}+6\left(-2-\sqrt{3}\right)}{6}
Since \frac{\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}}{6} and \frac{6\left(-2-\sqrt{3}\right)}{6} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{3}+3\sqrt{2}-12-6\sqrt{3}}{6}
Do the multiplications in \left(3\sqrt{2}+\sqrt{3}\right)\sqrt{6}+6\left(-2-\sqrt{3}\right).
\frac{3\sqrt{2}-12}{6}
Do the calculations in 6\sqrt{3}+3\sqrt{2}-12-6\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}