Evaluate (complex solution)
\frac{3\sqrt{3}i}{2}\approx 2.598076211i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\left(4-6\right)^{2}\sqrt{-\frac{54}{128}}
Calculate the square root of 16 and get 4.
\left(-2\right)^{2}\sqrt{-\frac{54}{128}}
Subtract 6 from 4 to get -2.
4\sqrt{-\frac{54}{128}}
Calculate -2 to the power of 2 and get 4.
4\sqrt{-\frac{27}{64}}
Reduce the fraction \frac{54}{128} to lowest terms by extracting and canceling out 2.
4\times \frac{\sqrt{-27}}{\sqrt{64}}
Rewrite the square root of the division \sqrt{-\frac{27}{64}} as the division of square roots \frac{\sqrt{-27}}{\sqrt{64}}.
4\times \frac{3i\sqrt{3}}{\sqrt{64}}
Factor -27=\left(3i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 3} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{3}. Take the square root of \left(3i\right)^{2}.
4\times \frac{3i\sqrt{3}}{8}
Calculate the square root of 64 and get 8.
4\times \left(\frac{3}{8}i\right)\sqrt{3}
Divide 3i\sqrt{3} by 8 to get \frac{3}{8}i\sqrt{3}.
\frac{3}{2}i\sqrt{3}
Multiply 4 and \frac{3}{8}i to get \frac{3}{2}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}