Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{15}\right)^{2}+4\sqrt{15}+4\right)\left(\sqrt{15}-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{15}+2\right)^{2}.
\left(15+4\sqrt{15}+4\right)\left(\sqrt{15}-2\right)^{2}
The square of \sqrt{15} is 15.
\left(19+4\sqrt{15}\right)\left(\sqrt{15}-2\right)^{2}
Add 15 and 4 to get 19.
\left(19+4\sqrt{15}\right)\left(\left(\sqrt{15}\right)^{2}-4\sqrt{15}+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{15}-2\right)^{2}.
\left(19+4\sqrt{15}\right)\left(15-4\sqrt{15}+4\right)
The square of \sqrt{15} is 15.
\left(19+4\sqrt{15}\right)\left(19-4\sqrt{15}\right)
Add 15 and 4 to get 19.
361-\left(4\sqrt{15}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 19.
361-4^{2}\left(\sqrt{15}\right)^{2}
Expand \left(4\sqrt{15}\right)^{2}.
361-16\left(\sqrt{15}\right)^{2}
Calculate 4 to the power of 2 and get 16.
361-16\times 15
The square of \sqrt{15} is 15.
361-240
Multiply 16 and 15 to get 240.
121
Subtract 240 from 361 to get 121.