Evaluate
6\left(\sqrt{5}+3\right)\approx 31.416407865
Expand
6 \sqrt{5} + 18 = 31.416407865
Share
Copied to clipboard
\left(\sqrt{15}\right)^{2}+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{15}+\sqrt{3}\right)^{2}.
15+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{15} is 15.
15+2\sqrt{3}\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
15+2\times 3\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
15+6\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply 2 and 3 to get 6.
15+6\sqrt{5}+3
The square of \sqrt{3} is 3.
18+6\sqrt{5}
Add 15 and 3 to get 18.
\left(\sqrt{15}\right)^{2}+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{15}+\sqrt{3}\right)^{2}.
15+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{15} is 15.
15+2\sqrt{3}\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
15+2\times 3\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
15+6\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply 2 and 3 to get 6.
15+6\sqrt{5}+3
The square of \sqrt{3} is 3.
18+6\sqrt{5}
Add 15 and 3 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}