Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{15}\right)^{2}+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{15}+\sqrt{3}\right)^{2}.
15+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{15} is 15.
15+2\sqrt{3}\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
15+2\times 3\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
15+6\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply 2 and 3 to get 6.
15+6\sqrt{5}+3
The square of \sqrt{3} is 3.
18+6\sqrt{5}
Add 15 and 3 to get 18.
\left(\sqrt{15}\right)^{2}+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{15}+\sqrt{3}\right)^{2}.
15+2\sqrt{15}\sqrt{3}+\left(\sqrt{3}\right)^{2}
The square of \sqrt{15} is 15.
15+2\sqrt{3}\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
15+2\times 3\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
15+6\sqrt{5}+\left(\sqrt{3}\right)^{2}
Multiply 2 and 3 to get 6.
15+6\sqrt{5}+3
The square of \sqrt{3} is 3.
18+6\sqrt{5}
Add 15 and 3 to get 18.