Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{5}+\sqrt{5}}{\sqrt[4]{25}}=6
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{6\sqrt{5}}{\sqrt[4]{25}}=6
Combine 5\sqrt{5} and \sqrt{5} to get 6\sqrt{5}.
\sqrt[4]{25}=\sqrt[4]{5^{2}}=5^{\frac{2}{4}}=5^{\frac{1}{2}}=\sqrt{5}
Rewrite \sqrt[4]{25} as \sqrt[4]{5^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
\frac{6\sqrt{5}}{\sqrt{5}}=6
Insert the obtained value back in the expression.
\frac{6\sqrt{5}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}=6
Rationalize the denominator of \frac{6\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{6\sqrt{5}\sqrt{5}}{5}=6
The square of \sqrt{5} is 5.
\frac{6\times 5}{5}=6
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{30}{5}=6
Multiply 6 and 5 to get 30.
6=6
Divide 30 by 5 to get 6.
\text{true}
Compare 6 and 6.