Verify
true
Share
Copied to clipboard
\frac{5\sqrt{5}+\sqrt{5}}{\sqrt[4]{25}}=6
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{6\sqrt{5}}{\sqrt[4]{25}}=6
Combine 5\sqrt{5} and \sqrt{5} to get 6\sqrt{5}.
\sqrt[4]{25}=\sqrt[4]{5^{2}}=5^{\frac{2}{4}}=5^{\frac{1}{2}}=\sqrt{5}
Rewrite \sqrt[4]{25} as \sqrt[4]{5^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
\frac{6\sqrt{5}}{\sqrt{5}}=6
Insert the obtained value back in the expression.
\frac{6\sqrt{5}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}=6
Rationalize the denominator of \frac{6\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{6\sqrt{5}\sqrt{5}}{5}=6
The square of \sqrt{5} is 5.
\frac{6\times 5}{5}=6
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{30}{5}=6
Multiply 6 and 5 to get 30.
6=6
Divide 30 by 5 to get 6.
\text{true}
Compare 6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}