Evaluate
12-3\sqrt{3}\approx 6.803847577
Factor
3 {(4 - \sqrt{3})} = 6.803847577
Share
Copied to clipboard
\left(2\sqrt{3}-2\right)\sqrt{3}+\sqrt{18}\sqrt{2}-\frac{1}{5}\sqrt{75}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{18}\sqrt{2}-\frac{1}{5}\sqrt{75}
Use the distributive property to multiply 2\sqrt{3}-2 by \sqrt{3}.
2\times 3-2\sqrt{3}+\sqrt{18}\sqrt{2}-\frac{1}{5}\sqrt{75}
The square of \sqrt{3} is 3.
6-2\sqrt{3}+\sqrt{18}\sqrt{2}-\frac{1}{5}\sqrt{75}
Multiply 2 and 3 to get 6.
6-2\sqrt{3}+\sqrt{2}\sqrt{9}\sqrt{2}-\frac{1}{5}\sqrt{75}
Factor 18=2\times 9. Rewrite the square root of the product \sqrt{2\times 9} as the product of square roots \sqrt{2}\sqrt{9}.
6-2\sqrt{3}+2\sqrt{9}-\frac{1}{5}\sqrt{75}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-2\sqrt{3}+2\times 3-\frac{1}{5}\sqrt{75}
Calculate the square root of 9 and get 3.
6-2\sqrt{3}+6-\frac{1}{5}\sqrt{75}
Multiply 2 and 3 to get 6.
12-2\sqrt{3}-\frac{1}{5}\sqrt{75}
Add 6 and 6 to get 12.
12-2\sqrt{3}-\frac{1}{5}\times 5\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
12-2\sqrt{3}-\sqrt{3}
Cancel out 5 and 5.
12-3\sqrt{3}
Combine -2\sqrt{3} and -\sqrt{3} to get -3\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}