Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{3}-\sqrt{63}+\sqrt{75}\right)\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(2\sqrt{3}-3\sqrt{7}+\sqrt{75}\right)\sqrt{3}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\left(2\sqrt{3}-3\sqrt{7}+5\sqrt{3}\right)\sqrt{3}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\left(7\sqrt{3}-3\sqrt{7}\right)\sqrt{3}
Combine 2\sqrt{3} and 5\sqrt{3} to get 7\sqrt{3}.
7\left(\sqrt{3}\right)^{2}-3\sqrt{7}\sqrt{3}
Use the distributive property to multiply 7\sqrt{3}-3\sqrt{7} by \sqrt{3}.
7\times 3-3\sqrt{7}\sqrt{3}
The square of \sqrt{3} is 3.
21-3\sqrt{7}\sqrt{3}
Multiply 7 and 3 to get 21.
21-3\sqrt{21}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.