Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{11}\right)^{2}-2\sqrt{11}+1\right)\left(\sqrt{11}+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{11}-1\right)^{2}.
\left(11-2\sqrt{11}+1\right)\left(\sqrt{11}+1\right)^{2}
The square of \sqrt{11} is 11.
\left(12-2\sqrt{11}\right)\left(\sqrt{11}+1\right)^{2}
Add 11 and 1 to get 12.
\left(12-2\sqrt{11}\right)\left(\left(\sqrt{11}\right)^{2}+2\sqrt{11}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{11}+1\right)^{2}.
\left(12-2\sqrt{11}\right)\left(11+2\sqrt{11}+1\right)
The square of \sqrt{11} is 11.
\left(12-2\sqrt{11}\right)\left(12+2\sqrt{11}\right)
Add 11 and 1 to get 12.
144-\left(2\sqrt{11}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 12.
144-2^{2}\left(\sqrt{11}\right)^{2}
Expand \left(2\sqrt{11}\right)^{2}.
144-4\left(\sqrt{11}\right)^{2}
Calculate 2 to the power of 2 and get 4.
144-4\times 11
The square of \sqrt{11} is 11.
144-44
Multiply 4 and 11 to get 44.
100
Subtract 44 from 144 to get 100.