Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{5}\right)^{2}.
10-2\sqrt{10}\sqrt{5}+\left(\sqrt{5}\right)^{2}
The square of \sqrt{10} is 10.
10-2\sqrt{5}\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
10-2\times 5\sqrt{2}+\left(\sqrt{5}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
10-10\sqrt{2}+\left(\sqrt{5}\right)^{2}
Multiply -2 and 5 to get -10.
10-10\sqrt{2}+5
The square of \sqrt{5} is 5.
15-10\sqrt{2}
Add 10 and 5 to get 15.
\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{5}\right)^{2}.
10-2\sqrt{10}\sqrt{5}+\left(\sqrt{5}\right)^{2}
The square of \sqrt{10} is 10.
10-2\sqrt{5}\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
10-2\times 5\sqrt{2}+\left(\sqrt{5}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
10-10\sqrt{2}+\left(\sqrt{5}\right)^{2}
Multiply -2 and 5 to get -10.
10-10\sqrt{2}+5
The square of \sqrt{5} is 5.
15-10\sqrt{2}
Add 10 and 5 to get 15.