Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{2}\right)^{2}.
10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{10} is 10.
10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
10-4\sqrt{5}+2
The square of \sqrt{2} is 2.
12-4\sqrt{5}
Add 10 and 2 to get 12.
\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{2}\right)^{2}.
10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
The square of \sqrt{10} is 10.
10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}
Multiply -2 and 2 to get -4.
10-4\sqrt{5}+2
The square of \sqrt{2} is 2.
12-4\sqrt{5}
Add 10 and 2 to get 12.