Evaluate
-2.25
Factor
-2.25
Share
Copied to clipboard
\left(\sqrt{0.81}+0.3^{2}-\frac{6}{25}\right)\left(-3\right)
Subtract 0.19 from 1 to get 0.81.
\left(0.9+0.3^{2}-\frac{6}{25}\right)\left(-3\right)
Calculate the square root of 0.81 and get 0.9.
\left(0.9+0.09-\frac{6}{25}\right)\left(-3\right)
Calculate 0.3 to the power of 2 and get 0.09.
\left(0.99-\frac{6}{25}\right)\left(-3\right)
Add 0.9 and 0.09 to get 0.99.
\left(\frac{99}{100}-\frac{6}{25}\right)\left(-3\right)
Convert decimal number 0.99 to fraction \frac{99}{100}.
\left(\frac{99}{100}-\frac{24}{100}\right)\left(-3\right)
Least common multiple of 100 and 25 is 100. Convert \frac{99}{100} and \frac{6}{25} to fractions with denominator 100.
\frac{99-24}{100}\left(-3\right)
Since \frac{99}{100} and \frac{24}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{75}{100}\left(-3\right)
Subtract 24 from 99 to get 75.
\frac{3}{4}\left(-3\right)
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{3\left(-3\right)}{4}
Express \frac{3}{4}\left(-3\right) as a single fraction.
\frac{-9}{4}
Multiply 3 and -3 to get -9.
-\frac{9}{4}
Fraction \frac{-9}{4} can be rewritten as -\frac{9}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}