( \sqrt { 1 - 0,19 } + 0,3 ^ { 2 } - \frac { 6 } { 25 } ) \cdot ( - 3 )
Evaluate
-1,98
Factor
-1,98
Share
Copied to clipboard
\left(\sqrt{0,81}+0\times 3^{2}-\frac{6}{25}\right)\left(-3\right)
Subtract 0,19 from 1 to get 0,81.
\left(0,9+0\times 3^{2}-\frac{6}{25}\right)\left(-3\right)
Calculate the square root of 0,81 and get 0,9.
\left(0,9+0\times 9-\frac{6}{25}\right)\left(-3\right)
Calculate 3 to the power of 2 and get 9.
\left(0,9+0-\frac{6}{25}\right)\left(-3\right)
Multiply 0 and 9 to get 0.
\left(0,9-\frac{6}{25}\right)\left(-3\right)
Add 0,9 and 0 to get 0,9.
\left(\frac{9}{10}-\frac{6}{25}\right)\left(-3\right)
Convert decimal number 0,9 to fraction \frac{9}{10}.
\left(\frac{45}{50}-\frac{12}{50}\right)\left(-3\right)
Least common multiple of 10 and 25 is 50. Convert \frac{9}{10} and \frac{6}{25} to fractions with denominator 50.
\frac{45-12}{50}\left(-3\right)
Since \frac{45}{50} and \frac{12}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{50}\left(-3\right)
Subtract 12 from 45 to get 33.
\frac{33\left(-3\right)}{50}
Express \frac{33}{50}\left(-3\right) as a single fraction.
\frac{-99}{50}
Multiply 33 and -3 to get -99.
-\frac{99}{50}
Fraction \frac{-99}{50} can be rewritten as -\frac{99}{50} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}