Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(\frac{\sqrt{8}}{\sqrt{27}}-5\sqrt{3}\right)
Rewrite the square root of the division \sqrt{\frac{8}{27}} as the division of square roots \frac{\sqrt{8}}{\sqrt{27}}.
6\left(\frac{2\sqrt{2}}{\sqrt{27}}-5\sqrt{3}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
6\left(\frac{2\sqrt{2}}{3\sqrt{3}}-5\sqrt{3}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
6\left(\frac{2\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-5\sqrt{3}\right)
Rationalize the denominator of \frac{2\sqrt{2}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
6\left(\frac{2\sqrt{2}\sqrt{3}}{3\times 3}-5\sqrt{3}\right)
The square of \sqrt{3} is 3.
6\left(\frac{2\sqrt{6}}{3\times 3}-5\sqrt{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
6\left(\frac{2\sqrt{6}}{9}-5\sqrt{3}\right)
Multiply 3 and 3 to get 9.
6\left(\frac{2\sqrt{6}}{9}+\frac{9\left(-5\right)\sqrt{3}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -5\sqrt{3} times \frac{9}{9}.
6\times \frac{2\sqrt{6}+9\left(-5\right)\sqrt{3}}{9}
Since \frac{2\sqrt{6}}{9} and \frac{9\left(-5\right)\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
6\times \frac{2\sqrt{6}-45\sqrt{3}}{9}
Do the multiplications in 2\sqrt{6}+9\left(-5\right)\sqrt{3}.
\frac{6\left(2\sqrt{6}-45\sqrt{3}\right)}{9}
Express 6\times \frac{2\sqrt{6}-45\sqrt{3}}{9} as a single fraction.
\frac{12\sqrt{6}-270\sqrt{3}}{9}
Use the distributive property to multiply 6 by 2\sqrt{6}-45\sqrt{3}.