Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{7}}{\sqrt{6}}-3\sqrt{43}\right)\sqrt{3}
Rewrite the square root of the division \sqrt{\frac{7}{6}} as the division of square roots \frac{\sqrt{7}}{\sqrt{6}}.
\left(\frac{\sqrt{7}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}-3\sqrt{43}\right)\sqrt{3}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\left(\frac{\sqrt{7}\sqrt{6}}{6}-3\sqrt{43}\right)\sqrt{3}
The square of \sqrt{6} is 6.
\left(\frac{\sqrt{42}}{6}-3\sqrt{43}\right)\sqrt{3}
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
\left(\frac{\sqrt{42}}{6}+\frac{6\left(-3\right)\sqrt{43}}{6}\right)\sqrt{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3\sqrt{43} times \frac{6}{6}.
\frac{\sqrt{42}+6\left(-3\right)\sqrt{43}}{6}\sqrt{3}
Since \frac{\sqrt{42}}{6} and \frac{6\left(-3\right)\sqrt{43}}{6} have the same denominator, add them by adding their numerators.
\frac{\sqrt{42}-18\sqrt{43}}{6}\sqrt{3}
Do the multiplications in \sqrt{42}+6\left(-3\right)\sqrt{43}.
\frac{\left(\sqrt{42}-18\sqrt{43}\right)\sqrt{3}}{6}
Express \frac{\sqrt{42}-18\sqrt{43}}{6}\sqrt{3} as a single fraction.
\frac{\sqrt{42}\sqrt{3}-18\sqrt{43}\sqrt{3}}{6}
Use the distributive property to multiply \sqrt{42}-18\sqrt{43} by \sqrt{3}.
\frac{\sqrt{3}\sqrt{14}\sqrt{3}-18\sqrt{43}\sqrt{3}}{6}
Factor 42=3\times 14. Rewrite the square root of the product \sqrt{3\times 14} as the product of square roots \sqrt{3}\sqrt{14}.
\frac{3\sqrt{14}-18\sqrt{43}\sqrt{3}}{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{14}-18\sqrt{129}}{6}
To multiply \sqrt{43} and \sqrt{3}, multiply the numbers under the square root.