Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{1}}{\sqrt{2}}+\sqrt{3}-\left(\sqrt{2}-\sqrt{12}\right)
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\frac{1}{\sqrt{2}}+\sqrt{3}-\left(\sqrt{2}-\sqrt{12}\right)
Calculate the square root of 1 and get 1.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}-\left(\sqrt{2}-\sqrt{12}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{2}+\sqrt{3}-\left(\sqrt{2}-\sqrt{12}\right)
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}-\left(\sqrt{2}-\sqrt{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
\frac{\sqrt{2}+2\sqrt{3}}{2}-\left(\sqrt{2}-\sqrt{12}\right)
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+2\sqrt{3}}{2}-\left(\sqrt{2}-2\sqrt{3}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{2}+2\sqrt{3}}{2}-\frac{2\left(\sqrt{2}-2\sqrt{3}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2}-2\sqrt{3} times \frac{2}{2}.
\frac{\sqrt{2}+2\sqrt{3}-2\left(\sqrt{2}-2\sqrt{3}\right)}{2}
Since \frac{\sqrt{2}+2\sqrt{3}}{2} and \frac{2\left(\sqrt{2}-2\sqrt{3}\right)}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{2}+2\sqrt{3}-2\sqrt{2}+4\sqrt{3}}{2}
Do the multiplications in \sqrt{2}+2\sqrt{3}-2\left(\sqrt{2}-2\sqrt{3}\right).
\frac{-\sqrt{2}+6\sqrt{3}}{2}
Do the calculations in \sqrt{2}+2\sqrt{3}-2\sqrt{2}+4\sqrt{3}.