Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{2}}{2}\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})\right)^{2}
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\left(\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})\right)^{2}
Get the value of \cos(\frac{\pi }{6}) from trigonometric values table.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})\right)^{2}
Multiply \frac{\sqrt{2}}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{1}{2}\cos(\frac{\pi }{4})\right)^{2}
Get the value of \sin(\frac{\pi }{6}) from trigonometric values table.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{1}{2}\times \frac{\sqrt{2}}{2}\right)^{2}
Get the value of \cos(\frac{\pi }{4}) from trigonometric values table.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{\sqrt{2}}{2\times 2}\right)^{2}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{\sqrt{2}}{4}\right)^{2}
Multiply 2 and 2 to get 4.
\left(\frac{\sqrt{2}\sqrt{3}}{4}-\frac{\sqrt{2}}{4}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\left(\frac{\sqrt{2}\sqrt{3}-\sqrt{2}}{4}\right)^{2}
Since \frac{\sqrt{2}\sqrt{3}}{4} and \frac{\sqrt{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}
Do the multiplications in \sqrt{2}\sqrt{3}-\sqrt{2}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}
To raise \frac{\sqrt{6}-\sqrt{2}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{6} is 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Multiply -2 and 2 to get -4.
\frac{6-4\sqrt{3}+2}{4^{2}}
The square of \sqrt{2} is 2.
\frac{8-4\sqrt{3}}{4^{2}}
Add 6 and 2 to get 8.
\frac{8-4\sqrt{3}}{16}
Calculate 4 to the power of 2 and get 16.
\left(\frac{\sqrt{2}}{2}\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})\right)^{2}
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\left(\frac{\sqrt{2}}{2}\times \frac{\sqrt{3}}{2}-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})\right)^{2}
Get the value of \cos(\frac{\pi }{6}) from trigonometric values table.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\sin(\frac{\pi }{6})\cos(\frac{\pi }{4})\right)^{2}
Multiply \frac{\sqrt{2}}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{1}{2}\cos(\frac{\pi }{4})\right)^{2}
Get the value of \sin(\frac{\pi }{6}) from trigonometric values table.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{1}{2}\times \frac{\sqrt{2}}{2}\right)^{2}
Get the value of \cos(\frac{\pi }{4}) from trigonometric values table.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{\sqrt{2}}{2\times 2}\right)^{2}
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{\sqrt{2}\sqrt{3}}{2\times 2}-\frac{\sqrt{2}}{4}\right)^{2}
Multiply 2 and 2 to get 4.
\left(\frac{\sqrt{2}\sqrt{3}}{4}-\frac{\sqrt{2}}{4}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\left(\frac{\sqrt{2}\sqrt{3}-\sqrt{2}}{4}\right)^{2}
Since \frac{\sqrt{2}\sqrt{3}}{4} and \frac{\sqrt{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}
Do the multiplications in \sqrt{2}\sqrt{3}-\sqrt{2}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}
To raise \frac{\sqrt{6}-\sqrt{2}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{6} is 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Multiply -2 and 2 to get -4.
\frac{6-4\sqrt{3}+2}{4^{2}}
The square of \sqrt{2} is 2.
\frac{8-4\sqrt{3}}{4^{2}}
Add 6 and 2 to get 8.
\frac{8-4\sqrt{3}}{16}
Calculate 4 to the power of 2 and get 16.