Evaluate
7ϕ
Expand
7ϕ
Share
Copied to clipboard
\frac{ϕ\times \frac{4+1}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 1 and 4 to get 4.
\frac{ϕ\times \frac{5}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Add 4 and 1 to get 5.
\frac{ϕ\times \frac{5\times 7}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Express \frac{5}{4}\times 7 as a single fraction.
\frac{ϕ\times \frac{35}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 5 and 7 to get 35.
\frac{ϕ\times \frac{35}{4}}{\frac{144+7}{12}-\frac{11\times 3+1}{3}}
Multiply 12 and 12 to get 144.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{11\times 3+1}{3}}
Add 144 and 7 to get 151.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{33+1}{3}}
Multiply 11 and 3 to get 33.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{34}{3}}
Add 33 and 1 to get 34.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{136}{12}}
Least common multiple of 12 and 3 is 12. Convert \frac{151}{12} and \frac{34}{3} to fractions with denominator 12.
\frac{ϕ\times \frac{35}{4}}{\frac{151-136}{12}}
Since \frac{151}{12} and \frac{136}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{ϕ\times \frac{35}{4}}{\frac{15}{12}}
Subtract 136 from 151 to get 15.
\frac{ϕ\times \frac{35}{4}}{\frac{5}{4}}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{ϕ\times \frac{35}{4}\times 4}{5}
Divide ϕ\times \frac{35}{4} by \frac{5}{4} by multiplying ϕ\times \frac{35}{4} by the reciprocal of \frac{5}{4}.
\frac{ϕ\times 35}{5}
Cancel out 4 and 4.
ϕ\times 7
Divide ϕ\times 35 by 5 to get ϕ\times 7.
\frac{ϕ\times \frac{4+1}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 1 and 4 to get 4.
\frac{ϕ\times \frac{5}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Add 4 and 1 to get 5.
\frac{ϕ\times \frac{5\times 7}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Express \frac{5}{4}\times 7 as a single fraction.
\frac{ϕ\times \frac{35}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 5 and 7 to get 35.
\frac{ϕ\times \frac{35}{4}}{\frac{144+7}{12}-\frac{11\times 3+1}{3}}
Multiply 12 and 12 to get 144.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{11\times 3+1}{3}}
Add 144 and 7 to get 151.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{33+1}{3}}
Multiply 11 and 3 to get 33.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{34}{3}}
Add 33 and 1 to get 34.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{136}{12}}
Least common multiple of 12 and 3 is 12. Convert \frac{151}{12} and \frac{34}{3} to fractions with denominator 12.
\frac{ϕ\times \frac{35}{4}}{\frac{151-136}{12}}
Since \frac{151}{12} and \frac{136}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{ϕ\times \frac{35}{4}}{\frac{15}{12}}
Subtract 136 from 151 to get 15.
\frac{ϕ\times \frac{35}{4}}{\frac{5}{4}}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{ϕ\times \frac{35}{4}\times 4}{5}
Divide ϕ\times \frac{35}{4} by \frac{5}{4} by multiplying ϕ\times \frac{35}{4} by the reciprocal of \frac{5}{4}.
\frac{ϕ\times 35}{5}
Cancel out 4 and 4.
ϕ\times 7
Divide ϕ\times 35 by 5 to get ϕ\times 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}