Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{ϕ\times \frac{4+1}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 1 and 4 to get 4.
\frac{ϕ\times \frac{5}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Add 4 and 1 to get 5.
\frac{ϕ\times \frac{5\times 7}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Express \frac{5}{4}\times 7 as a single fraction.
\frac{ϕ\times \frac{35}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 5 and 7 to get 35.
\frac{ϕ\times \frac{35}{4}}{\frac{144+7}{12}-\frac{11\times 3+1}{3}}
Multiply 12 and 12 to get 144.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{11\times 3+1}{3}}
Add 144 and 7 to get 151.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{33+1}{3}}
Multiply 11 and 3 to get 33.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{34}{3}}
Add 33 and 1 to get 34.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{136}{12}}
Least common multiple of 12 and 3 is 12. Convert \frac{151}{12} and \frac{34}{3} to fractions with denominator 12.
\frac{ϕ\times \frac{35}{4}}{\frac{151-136}{12}}
Since \frac{151}{12} and \frac{136}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{ϕ\times \frac{35}{4}}{\frac{15}{12}}
Subtract 136 from 151 to get 15.
\frac{ϕ\times \frac{35}{4}}{\frac{5}{4}}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{ϕ\times \frac{35}{4}\times 4}{5}
Divide ϕ\times \frac{35}{4} by \frac{5}{4} by multiplying ϕ\times \frac{35}{4} by the reciprocal of \frac{5}{4}.
\frac{ϕ\times 35}{5}
Cancel out 4 and 4.
ϕ\times 7
Divide ϕ\times 35 by 5 to get ϕ\times 7.
\frac{ϕ\times \frac{4+1}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 1 and 4 to get 4.
\frac{ϕ\times \frac{5}{4}\times 7}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Add 4 and 1 to get 5.
\frac{ϕ\times \frac{5\times 7}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Express \frac{5}{4}\times 7 as a single fraction.
\frac{ϕ\times \frac{35}{4}}{\frac{12\times 12+7}{12}-\frac{11\times 3+1}{3}}
Multiply 5 and 7 to get 35.
\frac{ϕ\times \frac{35}{4}}{\frac{144+7}{12}-\frac{11\times 3+1}{3}}
Multiply 12 and 12 to get 144.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{11\times 3+1}{3}}
Add 144 and 7 to get 151.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{33+1}{3}}
Multiply 11 and 3 to get 33.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{34}{3}}
Add 33 and 1 to get 34.
\frac{ϕ\times \frac{35}{4}}{\frac{151}{12}-\frac{136}{12}}
Least common multiple of 12 and 3 is 12. Convert \frac{151}{12} and \frac{34}{3} to fractions with denominator 12.
\frac{ϕ\times \frac{35}{4}}{\frac{151-136}{12}}
Since \frac{151}{12} and \frac{136}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{ϕ\times \frac{35}{4}}{\frac{15}{12}}
Subtract 136 from 151 to get 15.
\frac{ϕ\times \frac{35}{4}}{\frac{5}{4}}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
\frac{ϕ\times \frac{35}{4}\times 4}{5}
Divide ϕ\times \frac{35}{4} by \frac{5}{4} by multiplying ϕ\times \frac{35}{4} by the reciprocal of \frac{5}{4}.
\frac{ϕ\times 35}{5}
Cancel out 4 and 4.
ϕ\times 7
Divide ϕ\times 35 by 5 to get ϕ\times 7.